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University of California, Berkeley
Physics H7B Spring 1999 (Strovink)

SOLUTION TO PROBLEM SET 3

1. RHK problem 25.27
Solution: In Physics H7B, all problems in-
volving numbers should be solved completely in
terms of algebraic symbols before any numbers
are plugged in (otherwise it is much more diffi-
cult to give part credit). Let
Q = (unknown) heat added to gas (J)
n = no. of moles of gas = 4.34
Cp = molar specific heat of gas at constant pres-
sure (J/mole·K)
∆T = change in temperature of gas = 62.4 K
R = universal gas constant = 8.314 J/mole·K
Eint = internal energy of gas (J)
M = molecular weight of gas (kg/mole)
〈v2〉 = mean square velocity of gas molecules
(m2/sec2)
(a)

Q = nCp∆T (RHK Eq. 25.17)

Cp =
7
2
R (RHK Eq. 25.21)

Q =
7
2
nR∆T

= 7880 J .

(b)

Eint =
5
2
nRT (RHK Eq. 23.36)

∆Eint =
5
2
nR∆T

= 5629 J .

(c)

n
(1
2
M〈v2〉) = 3

2
nRT (RHK Eq. 23.31)

n
(1
2
M∆〈v2〉) = 3

2
nR∆T

= 3377 J .

2. RHK problem 25.34
Solution: Plunging blindly ahead, we could
start by assuming that “quickly” means quickly
enough so that a negligible amount of heat is

transferred between the gas and the ice water,
but slowly enough to allow the pressure neverthe-
less to be defined (as it is in RHK Fig. 25b); and
that “slowly” means slowly enough that the gas
and the ice water always have the same temper-
ature. If so, the “quick” compression of the gas
would occur along an adiabat, while the “slow”
expansion would occur along an isotherm. Then

W = −
∫ V2

V1

p dV −
∫ V2

V2

p dV −
∫ V1

V2

p dV .

Further assuming that the gas is ideal,

pV γ = p1V
γ
1 (adiabat)

pV = p1V1 (isotherm)

W = −
∫ V2

V1

p1V
γ
1

V γ
dV − 0−

∫ V1

V2

p1V1

V
dV

= −p1V
γ
1

−1
γ − 1

( 1
V γ−1

2

− 1
V γ−1

1

)
− p1V1 ln

V1

V2

=
p1V1

γ − 1

(V γ−1
1

V γ−1
2

− 1
)
− p1V1 ln

V1

V2
.

The above is correct, given the assumptions,
but it does not solve the problem; we are sup-
plied neither the initial volume nor the number
of moles of gas. Instead we are told that m =
0.122 kg of ice in the surrounding ice water are
melted in one cycle. The heat −Q = Lfm re-
quired to melt this ice, where Lf = 333 kJ/kg is
the latent heat of fusion of water, must be trans-
ferred from the gas (we call it −Q because +Q
is defined to be the heat transferred to the gas).
Around one cycle, the final temperature of gas is
the same as the initial; its internal energy, which
depends only on the temperature, can undergo
no net change. Therefore, around the cycle, the
work W done on the gas is given without any
assumptions by

∆Eint = 0
∆Eint = Q+W (1st Law)

W = −Q

= Lfm

= 40626 J .
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3. RHK problem 25.37
Solution:
(a)

W = −
∫ V2

V1

p dV

V

V1
=

p

p1
(from problem)

W = −
∫ V2

V1

p1

V1
V dV

= −1
2

p1

V1

(
V 2

2 − V 2
1

)

= −1
2
p1V1

((V2

V1

)2 − 1
)

p1V1 = nRT1

W = −1
2
nRT1

((V2

V1

)2 − 1
)

V2 = 2V1

W = −1
2
nRT1(4− 1)

W = −3
2
nRT1 .

(b)

Eint =
3
2
nRT (ideal monatomic gas)

∆Eint =
3
2
nR(T2 − T1)

nRT2 = p2V2

= (2p1)(2V1)
= 4p1V1

= 4nRT1

T2 − T1 = 3T1

∆Eint =
3
2
nR(3T1)

=
9
2
nRT1 .

(c)

∆Eint = Q+W (1st Law)
Q = ∆Eint − W

=
9
2
nRT1 −

(−3
2
nRT1

)
= 6nRT1 .

(d)

C ≡ Q

n∆T
(RHK Eq. 25.8)

=
6nRT1

n(4T1 − T1)
= 2R .

4. RHK problem 25.43
Solution: This problem is “overconstrained”:
that is, too many pieces of information are pro-
vided. For example, TC need not have been
supplied; it is uniquely determined by the facts
that process BC is adiabatic; that VB = VA; that
pC = pA; and that the gas is ideal monatomic.
This is illustrated by the following calculation
(not required as part of the solution):

pBV γ
B = pCV γ

C (adiabatic)
pBV γ

A = pAV γ
C

pV = nRT

pB = pA
TB

TA

V γ
A =

(nRTA

pA

)γ

V γ
C =

(nRTC

pA

)γ

pA
TB

TA

(nRTA

pA

)γ

= pA

(nRTC

pA

)γ

TB

TA
T γ

A = T γ
C

TC = TA

(TB

TA

)1/γ

= 454.71497 K .

If we needed to get exact answers, we would
need to plug in this exact value of TC , rather
than the approximate value of 455 K supplied
in the problem. To proceed further, we choose
not to use one known piece of information – not
to use (as we did above) the specific relationship
between p, V , T , and γ for an adiabatic transi-
tion. Because this choice is subjective and not
unique, when our solutions are expressed in al-
gebraic symbols we expect them also not to be
unique. However, as long as the exact value of
TC is plugged in, we expect any valid solution to
yield the same numerical results.
Let
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TA = temperature at point A = 300 K
TB = temperature at point B = 600 K
TC = temperature at point C = 454.71497 K
(see above discussion)
n = no. of moles of monatomic ideal gas = 1.00
R = universal gas constant = 8.314 J/mole·K
pA = 1.013× 105 Pa.
Then
(a)
Process AB:

∆Eint =
3
2
nR(TB − TA)

= 3741 J .

W = −
∫ VB

VA

p dV

= −
∫ VA

VA

p dV

= 0 .

Q = ∆Eint − W

=
3
2
nR(TB − TA) (= CV∆T )

= 3741 J .

Process BC:

∆Eint =
3
2
nR(TC − TB)

= −3
2
nR(TB − TC)

= −1812 J .

Q = 0 (adiabatic) .

W = ∆Eint − Q

= −3
2
nR(TB − TC)

= −1812 J .

Process CA:

∆Eint =
3
2
nR(TA − TC)

= −3
2
nR(TC − TA)

= −1929.45 J .

W = −
∫ VA

VC

p dV

= −pVA + pVC (p = pA = pC)
pV = nRT

W = −nRTA + nRTC

= nR(TC − TA)
= 1286.30 J .

Q = ∆Eint − W

= −3
2
nR(TC − TA)− nR(TC − TA)

= −5
2
nR(TC − TA) (= Cp∆T )

= −3215.75 J .

Complete cycle:

∆Eint ≡ 0 (state variable) .

W = −3
2
nR(TB − TC) + nR(TC − TA)

= −nRTA − 3
2
nRTB +

5
2
nRTC)

= −525.55 J .

Q =
3
2
nR(TB − TA)− 5

2
nR(TC − TA)

= nRTA +
3
2
nRTB − 5

2
nRTC

= 525.55 J .
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(b)
pB

pA
=

TB

TA
(V fixed)

pB = pA
TB

TA

= 2.026× 105 Pa .

pC = pA

= 1.013× 105 Pa .

VA =
nRTA

pA

VB = VA

=
nRTA

pA

= 0.0246 m3 .

VC

VA
=

TC

TA
(p fixed)

VC = VA
TC

TA

= 0.0373 m3 .

5. RHK problem 26.16
Solution: Consider a Carnot engine operat-
ing in reverse (as a refrigerator) between a cold
reservoir at temperature TL = 276 K and a hot
reservoir at TH = 308 K. Like all Carnot engines
it is characterized by the equality

|QH |
|QL| =

TH

TL
(RHK Eq. 26.9) .

For operation as a refrigerator, the heat QH

added to the gas by the hot reservoir is nega-
tive. Conversely, QL is positive. The net heat
Q = QH + QL added to the gas over one com-
plete cycle is negative. Since the internal energy
Eint is a state function, over a complete cycle it
must be conserved. Therefore, in one complete
cycle, −Q must be balanced by the mechanical
work W done on the gas. A figure of merit F
for a heat pump, the ratio of −QH to W , is

F =
−QH

W

=
−QH

−QH − QL

=
TH

TH − TL

= 9.625 .

The inventor claims to have achieved a figure of
merit equal to

F =
−QH

W

=
20 kW
1.9 kW

= 10.526 .

This is slightly larger than the Carnot figure
of merit. Any reversible heat pump will have
the same figure of merit as a Carnot engine.
The only other possibility would be that the in-
ventor’s heat pump is irreversible. For example,
friction in the refrigerator could convert a certain
additional amount W ′ of work directly to heat
in each cycle. In the best case, all of the heat
from W ′ would be dumped into the hot rather
than the cold reservoir. Then W ′ would be added
both to the numerator and to the denominator of
F , reducing its physical value further below the
value reported by the inventor. Therefore we are
forced to reject the inventor’s claim. (Neverthe-
less, many patents indeed have been granted for
processes that violate elementary physical laws.)

6. RHK problem 26.19
Solution: Again a Carnot engine is operated in
reverse between a hot reservoir at TH and a cold
reservoir at TL. Again QH is negative and QL is
positive, and, since the refrigerator is reversible,

|QH |
|QL| =

TH

TL
.

Again ∆Eint must be zero over a complete cy-
cle, so that W = −Q over the cycle.
(a)

W = −Q

= −QH − QL

= QL

(−QH

QL
− 1

)

= QL

(TH

TL
− 1

)

= QL
TH − TL

TL
.
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(b)

K ≡ QL

W

=
QL

−QH − QL

=
1

−QH

QL
− 1

=
1

TH

TL
− 1

=
TL

TH − TL
.

(c)

TL = 260 K
TH = 298 K

K =
TL

TH − TL

= 6.842 .

7. RHK problem 26.23
Solution: Let
Q1 = heat transferred to gas in engine from
(hot) reservoir 1 (> 0)
Q2 = heat transferred to gas in engine from
(cold) reservoir 1 (< 0)
Q1 = heat transferred to gas in refrigerator from
(hot) reservoir 3 (< 0)
Q1 = heat transferred to gas in engine from
(cold) reservoir 4 (> 0)
WE = mechanical work done on gas in engine
(< 0)
WR = mechanical work done on gas in refriger-
ator (> 0)

Then
−WE = Q1 +Q2

= Q1

(
1− −Q2

Q1

)

= Q1

(
1− T2

T1

)

WR = −Q3 − Q4

= −Q3

(
1− Q4

−Q3

)

= −Q3

(
1− T4

T3

)

1 =
−WR

WE

=
−Q3

(
1− T4

T3

)

Q1

(
1− T2

T1

)

−Q3

Q1
=

1− T2
T1

1− T4
T3

|Q3|
|Q1| =

1− T2
T1

1− T4
T3

.

8. RHK problem 26.27
Solution: Let
Wab = work done on gas in stroke ab, etc.
W = work done on gas in cycle
Wby eng = work done by engine in cycle
p0 = smaller pressure = 1.01× 105 Pa
p1 = larger pressure = 2p0

V0 = smaller volume = 0.0225 m3

V1 = larger volume = 2V0

Qabc = heat added to gas during pair of expan-
sion strokes
e = efficiency of engine
eCarnot = efficiency of Carnot engine operating
between two temperatures with ratio p1V1/p0V0

Then
(a)

W = Wab +Wbc +Wcd +Wda

= 0− p1(V1 − V0) + 0 + p0(V1 − V0)
= −(p1 − p0)(V1 − V0)

Wby eng = −W

= (p1 − p0)(V1 − V0)
= p0V0

= 22725 J .
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(b)

Qabc = Qab + Qbc

= Eint(c)− Eint(a)− Wab − Wbc

=
3
2
nR(Tc − Ta)− 0 + p1(V1 − V0)

=
3
2
p1V1 − 3

2
p0V0 + p1V1 − p1V0

=
5
2
p1V1 − p1V0 − 3

2
p0V0

=
13
2

p0V0

= 147713 J .

(c)

e ≡ Wby eng

Qabc

=
(p1 − p0)(V1 − V0)

5
2p1V1 − p1V0 − 3

2p0V0

=
2
13

= 0.1538 .

(d)

eCarnot =
Tc − Ta

Tc

=
p1V1 − p0V0

p1V1

=
3
4

.


